Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.946
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570333

RESUMO

Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Proteostase , Proteínas/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Autofagia
2.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575601

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
3.
Biochemistry (Mosc) ; 89(Suppl 1): S57-S70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621744

RESUMO

Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.


Assuntos
Doenças Neurodegenerativas , Vitamina K , Humanos , Vitamina K/metabolismo , Doenças Neurodegenerativas/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Biol Rep ; 51(1): 510, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622307

RESUMO

Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.


Assuntos
Dietilestilbestrol/análogos & derivados , Doenças Neurodegenerativas , Doença de Parkinson , Inibidores da Fosfodiesterase 4 , Animais , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Doença de Parkinson/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , AMP Cíclico/metabolismo , Doenças Neurodegenerativas/metabolismo , GMP Cíclico/metabolismo , Mamíferos/metabolismo
5.
Methods Mol Biol ; 2782: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622397

RESUMO

The role of immune system in the progression of neurodegenerative diseases has been studied for decades in animal models. However, invasive studies in human subjects remain controversial due to the heterogeneity of the presentation of different diagnostic categories at different stages of the disease. Peripheral blood mononuclear cells (PBMCs) contain immune cells including dendritic cells (DCs), monocytes, macrophages, and T lymphocytes. Isolating PBMCs from whole blood samples collected from patients provides a minimally invasive method for analyzing the immune system's function in patients with neurodegenerative diseases. By isolating single cell types from patients' peripheral blood, in vitro analyses can be conducted including RNA sequencing, immunofluorescence, and phagocytic analysis. In this chapter, we discuss PBMC separation and isolation of macrophages in pure culture in vitro. We also outline methods for performing RNA-seq on cultured macrophages and other techniques for investigating the role of macrophages in neurodegenerative disease pathophysiology.


Assuntos
Leucócitos Mononucleares , Doenças Neurodegenerativas , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Células Dendríticas , Monócitos , Macrófagos/metabolismo
6.
Fluids Barriers CNS ; 21(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566110

RESUMO

BACKGROUND: Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS: 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aß+) and 16 Aß- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS: LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aß+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION: The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Conchas Nasais/metabolismo , Conchas Nasais/patologia , Butanóis/metabolismo , Doenças Neurodegenerativas/metabolismo , Tiazóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Envelhecimento , Encéfalo/metabolismo , 1-Butanol/metabolismo , Peptídeos beta-Amiloides/metabolismo , Mamíferos/metabolismo
7.
Sci Rep ; 14(1): 8581, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615036

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Plasminogênio , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Dopamina , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Plasminogênio/metabolismo , Serina Proteases , Proteínas tau/metabolismo , Neurônios Dopaminérgicos/patologia
8.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607048

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Cardiolipinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias , Membranas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo
9.
Cells ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607087

RESUMO

Neurodegenerative diseases are chronic conditions occurring when neurons die in specific brain regions that lead to loss of movement or cognitive functions. Despite the progress in understanding the mechanisms of this pathology, currently no cure exists to treat these types of diseases: for some of them the only help is alleviating the associated symptoms. Mitochondrial dysfunction has been shown to be involved in the pathogenesis of most the neurodegenerative disorders. The fast and transient permeability of mitochondria (the mitochondrial permeability transition, mPT) has been shown to be an initial step in the mechanism of apoptotic and necrotic cell death, which acts as a regulator of tissue regeneration for postmitotic neurons as it leads to the irreparable loss of cells and cell function. In this study, we review the role of the mitochondrial permeability transition in neuronal death in major neurodegenerative diseases, covering the inductors of mPTP opening in neurons, including the major ones-free radicals and calcium-and we discuss perspectives and difficulties in the development of a neuroprotective strategy based on the inhibition of mPTP in neurodegenerative disorders.


Assuntos
Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Doenças Neurodegenerativas , Humanos , Mitocôndrias/metabolismo , Morte Celular/fisiologia , Necrose/metabolismo , Doenças Neurodegenerativas/metabolismo
10.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577975

RESUMO

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Assuntos
Fármacos Antiobesidade , Neuropeptídeos , Fármacos Neuroprotetores , Obesidade , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ingestão de Alimentos/efeitos dos fármacos
11.
Biochem Soc Trans ; 52(2): 553-565, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563502

RESUMO

Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Neurônios , Parvalbuminas , Humanos , Parvalbuminas/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Animais , Neurônios/metabolismo , Doenças do Sistema Nervoso/metabolismo , Encéfalo/metabolismo
12.
Mol Biomed ; 5(1): 14, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644450

RESUMO

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.


Assuntos
Inflamassomos , Proteínas NLR , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Animais , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais/imunologia , Imunidade Inata , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética
13.
PLoS Biol ; 22(4): e3002559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652714

RESUMO

Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Ciclo Celular , Senescência Celular , Neurônios , Animais , Humanos , Senescência Celular/genética , Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento/fisiologia , Envelhecimento/genética , Ciclo Celular/genética , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transcriptoma/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Perfilação da Expressão Gênica , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Camundongos Endogâmicos C57BL , Idoso
14.
Clin Sci (Lond) ; 138(8): 515-536, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38652065

RESUMO

Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.


Assuntos
Envelhecimento , Astrócitos , Doenças Neurodegenerativas , Obesidade , Humanos , Astrócitos/metabolismo , Obesidade/fisiopatologia , Obesidade/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Envelhecimento/fisiologia , Animais , Mitocôndrias/metabolismo
15.
Biochem Soc Trans ; 52(2): 693-706, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629629

RESUMO

Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Ferro/metabolismo , Oxirredução , Antineoplásicos/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
16.
PLoS One ; 19(4): e0298748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630734

RESUMO

Although histone proteins are widely known for their intranuclear functions where they organize DNA, all five histone types can also be released into the extracellular space from damaged cells. Extracellular histones can interact with pattern recognition receptors of peripheral immune cells, including toll-like receptor 4 (TLR4), causing pro-inflammatory activation, which indicates they may act as damage-associated molecular patterns (DAMPs) in peripheral tissues. Very limited information is available about functions of extracellular histones in the central nervous system (CNS). To address this knowledge gap, we applied mixed histones (MH) to cultured cells modeling neurons, microglia, and astrocytes. Microglia are the professional CNS immunocytes, while astrocytes are the main support cells for neurons. Both these cell types are critical for neuroimmune responses and their dysregulated activity contributes to neurodegenerative diseases. We measured effects of extracellular MH on cell viability and select neuroimmune functions of microglia and astrocytes. MH were toxic to cultured primary murine neurons and also reduced viability of NSC-34 murine and SH-SY5Y human neuron-like cells in TLR4-dependent manner. MH did not affect the viability of resting or immune-stimulated BV-2 murine microglia or U118 MG human astrocytic cells. When applied to BV-2 cells, MH enhanced secretion of the potential neurotoxin glutamate, but did not modulate the release of nitric oxide (NO), tumor necrosis factor-α (TNF), C-X-C motif chemokine ligand 10 (CXCL10), or the overall cytotoxicity of lipopolysaccharide (LPS)- and/or interferon (IFN)-γ-stimulated BV-2 microglial cells towards NSC-34 neuron-like cells. We demonstrated, for the first time, that MH downregulated phagocytic activity of LPS-stimulated BV-2 microglia. However, MH also exhibited protective effect by ameliorating the cytotoxicity of LPS-stimulated U118 MG astrocytic cells towards SH-SY5Y neuron-like cells. Our data demonstrate extracellular MH could both damage neurons and alter neuroimmune functions of glial cells. These actions of MH could be targeted for treatment of neurodegenerative diseases.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Histonas/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Neuroblastoma/metabolismo , Microglia/metabolismo , Células Cultivadas , Doenças Neurodegenerativas/metabolismo
17.
Transl Neurodegener ; 13(1): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528629

RESUMO

Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Sinucleinopatias , Tauopatias , Humanos , Sinucleinopatias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/metabolismo , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/complicações , Tauopatias/metabolismo , Doença de Alzheimer/genética
18.
Exp Brain Res ; 242(4): 971-986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430248

RESUMO

The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Idoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia
19.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474399

RESUMO

Numerous reports have demonstrated the breakdown of the blood-CNS barrier (B-CNS-B) in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease. Re-establishing barrier integrity in the CNS is critical to prevent further motor neuron degeneration from harmful components in systemic circulation. Potential therapeutic strategies for repairing the B-CNS-B may be achieved by the replacement of damaged endothelial cells (ECs) via stem cell administration or enhancement of endogenous EC survival through the delivery of bioactive particles secreted by stem cells. These cellular and noncellular approaches are thoroughly discussed in the present review. Specific attention is given to certain stem cell types for EC replacement. Also, various nanoparticles secreted by stem cells as well as other biomolecules are elucidated as promising agents for endogenous EC repair. Although the noted in vitro and in vivo studies show the feasibility of the proposed therapeutic approaches to the repair of the B-CNS-B in ALS, further investigation is needed prior to clinical transition.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/metabolismo , Células-Tronco/metabolismo
20.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534318

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Receptores Nicotínicos , Humanos , Doença de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA